cowyeet_terminal/physics/kreis.py

62 lines
1.8 KiB
Python
Raw Normal View History

#!/usr/bin/python3
# -*- coding: utf-8 -*-
import os, sys, termios, tty, time, random
from math import sin, cos, sqrt
from time import sleep
# Randomly choose a cow
cows = "🐵🐒🦍🦧🐕🐯🦝🐩🐅🐴🐎🦄🦌🐗🐂🐃🐄🐪🐫🦙🦒🐹🦘🦡🐧🕊️🦅🦆🦉🐍🦎🐊🦜🦚🦩🐲🐉🦕"
cowslength = len(cows)
cow = cows[random.randint(0, cowslength - 1)]
# cow = "🐄"
# cow = "*"
if cow.isascii():
charlength = 1
else:
charlength = 2
# Needed: find our screensize
termsize_xy = os.get_terminal_size()
# maximum and medium of points in a row
xmax = termsize_xy[0] - 1
xmitte = xmax / 2
# maximum and medium of points in a column
ymax = termsize_xy[1]
ymitte = ymax / 2
# CTRL and ESC-codes for the used outputdevice. Probably a terminal.
clear, home, curoff, curon = "'\x1b[2J\x1b[H", "\x1b[H", "\x1b[?25l", "\x1b[?25h"
# pi is not defined by default. Noone has a display with 31416 Pixels in a row. U know better? Enhance it.
pi = 3.1416
# This is for convenience, if you are thinking in degrees. It must not be recalculated every loop.
deg2rad = pi / 180
# position cursor at x,y - where x=0 y=0 is the left lower corner like in mathematical diagrams
# some scales, we need. Those UTF8Cows are 2 chars wide and need more space. So we have to scale one Axis
radius = ymitte - 2
xradius = ymitte * charlength - 1
# Position the curser at x,y. Yes, we start with x, print does not, you are looking right. Leave it this way!
def curpos(x, y):
print("\033[%d;%dH" % (ymax - y, x), end="", flush=True)
print(clear, curoff)
# Draw a circle in maximum 360 Steps, one for for every degree
for winkel in range(0, 359):
x = sin(winkel * deg2rad) * xradius + xmitte
y = cos(winkel * deg2rad) * radius + ymitte
curpos(x, y)
print(cow, end="")
time.sleep(0.01)
curpos(1, 1)
sys.exit(curon + "Schulz nun.")